If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25p^2+20p-23=0
a = 25; b = 20; c = -23;
Δ = b2-4ac
Δ = 202-4·25·(-23)
Δ = 2700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2700}=\sqrt{900*3}=\sqrt{900}*\sqrt{3}=30\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-30\sqrt{3}}{2*25}=\frac{-20-30\sqrt{3}}{50} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+30\sqrt{3}}{2*25}=\frac{-20+30\sqrt{3}}{50} $
| 54-z=4 | | 8-3b=4 | | 34=k+11 | | 2x-1/5=-12 | | 9-(2-2x)=5 | | 25*n=225 | | 0=42x-10 | | 54=3*w | | 32^n=8 | | 35=5*n | | 111+9x+6=180 | | e-36=45 | | 4x-(7)=33 | | 6*n=9*8 | | -7.5g=20/3 | | 7+2x=2(x−1)+4. | | -3x+7=-3x-80 | | 3x+178=6x+128 | | 4m^2-3m-5=0 | | 29+y=105 | | 5x+3=6x-12 | | 2u+1/2=15.1+u | | 54=3+w | | -7-9=131+7x | | -130=6-8n | | 2x+1=x+10-2 | | 2(5x-5)=(6x+50 | | -4x/5=28 | | 2z+3=8 | | -2c+-8=4 | | 7=14j | | -50=6n-2 |